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ABSTRACT: Oxidation of the hydroxoosmium(III)
complex resulted in C−H bond activation of the methyl
group of the supporting ligand (N,N′-dimethyl-2,11-
diaza[3.3](2,6)pyridinophane). The product was an
osmium(IV) complex exhibiting a seven-coordinate
structure with an additional Os−CH2 bond.

Metal−oxo species, especially those of the group 8
elements, play key roles in the oxidation processes of

organic synthesis1−5 as well as in the catalytic cycles of several
metalloenzymes in the case of iron.6−9 Among the metal−oxo
complexes of the group 8 elements, those of ruthenium have
been studied most extensively because the synthetic pathway has
been well established.3−5 Recently, a number of iron−oxo
complexes have also been reported, providing important insights
into the catalytic mechanism of ironmonooxygenases.6−9 On the
other hand, osmium−oxo complexes have been considered to be
less reactive compared with the iron− and ruthenium−oxo
complexes because of the low-energy 5d orbitals, stabilizing the
oxo complexes by a strong interaction with the p orbitals of the
oxygen atom. Thus, little attention has been focused on the
reactivity of the osmium−oxo complexes,10 even though the
inorganic osmium(VIII) compounds such as OsO4

11,12 and
[OsN(O)3]

−13,14 have been widely utilized in alkene dihydrox-
ylation and alkane hydroxylation. So far, a number of osmium−
oxo complexes with simple (poly)pyridyl ligands were
synthesized, but the research target was limited in proton-
coupled electron-transfer reactivity generating osmium−hy-
droxo and osmium−aqua species or photochemical proper-
ties.15−22

In this study, we examine the reaction of an osmium(III)
complex supported by a macrocyclic tetraaza ligand L (=N,N′-
dimethyl-2,11-diaza[3.3](2,6)pyridinophane) and H2O2 to find
aliphatic C−H bond activation, giving an osmium(IV) organo-
metallic complex. The reaction may involve an osmium(V)−oxo
species as a key reactive intermediate.
First, dichloro- and dibenzoatoosmium(III) complexes with

ligand L, [OsIIICl2L]PF6 (1) and [OsIII(OBz)2L]PF6 (2), were
synthesized as precursors [ChemDraw structures (Chart S1 in
the Supporting Information, SI), and synthetic procedures are
provided in the SI]. Crystal structures of 1 and 2 are shown in
Figure 1, and the crystal graphical parameters are summarized in
Tables S1 and S2 in the SI. The Os1 atom of 1 is coordinated
with the four nitrogen atoms (N1−N4) from L and the two

chloride ions (Cl1 and Cl2). The N1−Os1−N3 angle of
157.1(3)° is significantly smaller than the regular angle of 180° in
a octahedron, which indicates that the octahedral geometry of the
Os1 center is highly distorted. The Os1 atom of 2 also has a
highly distorted octahedron, as indicated by the small N1−Os1−
N3 angle of 154.65(15)°.
Hydrolysis of 1 and 2 was then examined to obtain

osmium(III)−aqua and/or −hydroxo complexes. An aqueous
solution of 1 showed an electrospray ionization mass spectrum
(ESI-MS) only due to 1, indicating that the chloride ligands were
not replaced by the solvent water molecules. On the other hand,
as shown in Figure 2, the ESI-MS spectrum of an aqueous
solution of 2 showed a peak cluster at m/z 598. The isotopic
distribution pattern is consistent with that of [OsIII(OH)(OBz)-
L]+ (3), indicating that one of the benzoate ligands of 2 was
replaced by a hydroxide ion. Then, the acid−base chemistry of 3
was investigated.23 Figure S1a in the SI shows the UV−visible
spectral change of 3 in the pH titration, where the absorption
band at 354 nm due to 3 increases with a contaminant decrease of
the absorption bands around 300 nm due to 3H ([OsIII(OH2)-
(OBz)L]2+, the aqua form of 3; eq 1) with isosbestic points at 267
and 335 nm as the pH of the solution is raised from 2 to 7. A plot
of the absorbance at 354 nm against pH gave a sigmoidal curve
(Figure S1a in the SI, inset) ascribable to the acid−base
equilibrium between the OsIIIOH2 in 3H and the OsIIIOH in 3
(eq 1). The pKa value was calculated as 4.5 from the plot of
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Figure 1. Crystal structures of the cationic parts of 1 (a) and 2 (b)
shown in 50% ellipsoids. The hydrogen atoms were omitted for clarity.
Selected bond lengths (Å) and angles (deg) for 1: Os1−Cl1 2.362(3),
Os1−Cl2 2.360(2); Cl1−Os1−N4 175.22(19), Cl2−Os1−N6
173.5(2), N1−Os1−N3 157.1(3). Selected bond lengths (Å) and
angles (deg) for 2: Os1−O1 2.051(4), Os1−O2 2.069(4); O1−Os1−
N4 171.57(16), O3−Os1−N2 172.09(14), N1−Os1−N3 154.65(15).
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log(A0 − A)/(A∞ − A) versus the pH (Figure S1b in the SI and
eq 1). The value is somewhat larger than that of [OsIII(OH2)-
(trpy)(bpy)]3+ (pKa = 2.0; trpy = 2,2′:6′,2″-terpyridine; bpy =
2,2′-bipyridine),15 reflecting the lower Lewis acidity of the
osmium(III) center coordinated by the anionic benzoate ligand
than that by the noncharged trpy and bpy ligands.

⇌ ++ + +[Os (OH )(OBz)L] [Os (OH )(OBz)L] H
K

3H 3

III
2

2 III
2

a

(1)

An aqueous solution of 3 was then treated with H2O2 under a
dinitrogen atmosphere at 70 °C.23 Figure 3a shows the UV−

visible spectral changes for the titration of 3 with H2O2, where
the absorption bands around 280 and 370−470 nm decreased.
The plot of absorbance at 275 nm against the molar ratio of
[H2O2]/[3] (inset) clearly indicates the stoichiometry of 3:H2O2
= 1:0.5. As shown in Figure 3b, the ESI-MS spectrum measured
after the titration showed two peak clusters at m/z 597.1 as a
monocationic pattern and at m/z 290.1 as a dicationic pattern.
The isotopic distribution pattern of the parent peak cluster atm/

z 597.1 was consistent with that estimated for [OsIV(O)(OBz)-
L]+ or [OsIV(OH)(OBz)(L−H)]+ (L−H denotes a ligand losing
one H). Both compounds can be formally generated by one-
electron and one-proton loss from 3. On the other hand, the
isotopic distribution pattern of the dicationic peak cluster can be
assignable to [OsIV(OBz)(L−H)]2+. When the dicationic peak
cluster is assumed to be a fragment of the parent peak cluster, it
may be reasonable to assign the generated complex as
[OsIV(OH)(OBz)(L−H)]+ (4). Although a single crystal of 4
itself has yet to be obtained, the dibenzoate derivative
[OsIV(OBz)2(L−H)]+ (5) was successfully crystallized by
concentrating a solution of 4.
Figure 4 shows the crystal structure of 5. The Os1 atom is

coordinated by the four nitrogen atoms N1, N2, N2*, and N3 of

L−H and the two oxygen atomsO1 andO1* of the two benzoate
ligands. Notably, a direct coordination of C1 to Os1 was
observed, which made a seven-coordinate osmium center [Os1−
C1 bond distance = 2.101(9) Å]. Similar intramolecular bond
formation between a metal center and a carbon atom of a tertiary
amine macrocyclic ligand was observed in some cobalt(III)
complexes, where the Co−C bond length was 1.950(10) Å.24,25

The bond angles for O1*−Os1−N2 (=O1−Os1−N2) and N3−
Os1−C1 [167.77(18) and 169.9(3)°, respectively] are signifi-
cantly larger than that of N1−Os1−N3 [151.4(3)°]. Thus, the
geometry of the seven-coordinate Os1 atom is best described as a
capped octahedron, where N1 acts as the capping ligand. In the
1H NMR spectrum of 5 in CD3CN, sharp signals were observed
in the range from 3.10 to 7.92 ppm (see the SI), indicating that
the spin state of complex 5 is S = 0 (singlet). Also, the presence of
one PF6

− counteranion per one complex cation supports the
OsIV oxidation state in 5. Because complex 5 was generated just
by a ligand exchange reaction from OH− in 4 to OBz− in 5, it can
be concluded that complex 4 has a similar OsIV−CH2 bond.
A possible mechanism for the conversion of 2 to 5 is presented

in Scheme S1 in the SI. Because formation of the organometallic
OsIV−CH2 bond was not observed in the reaction of the
dichloroosmium(III) complex 1 with H2O2 in H2O and 1 hardly
underwent hydrolysis, the osmium(III) hydroxo complex 3
formed by hydrolysis of the osmium(III) dibenzoate complex 2 is
a starting complex for the C−H bond activation of the methyl
group of L. Then, the reaction of 3 and H2O2 may provide an
osmium(IV) oxo intermediate (I) through electron-transfer
oxidation followed by deprotonation or via O−O bond
homolytic cleavage of a dinuclear osmium-μ-peroxo-type
intermediate (not shown in Scheme S1 in the SI). Both reaction
pathways are consistent with the observed stoichiometry of

Figure 2. Positive ESI-MS of 3 generated by the treatment of 2 with
H2O. Inset: expanded spectrum around m/z 598 (obsd) and calculated
isotopic distribution pattern for 3.

Figure 3. (a) UV−visible spectral changes observed upon addition of n/
10 equiv of H2O2 to 3 (n = 1−7; [3] = 0.1 mM) in H2O. Inset: plot of
absorbance at 275 nm against the molar ratio of [H2O2]/[3]. (b)
Positive ESI-MS spectrum of a solution measured after the reaction.

Figure 4. Crystal structure of the cationic part of 5 shown in 50%
ellipsoids. The hydrogen atoms were omitted for clarity. Selected bond
lengths (Å) and angles (deg): Os1−O1 2.075(5), Os1−C1 2.101(9);
O1−Os1−N2* 167.77(18), N3−Os1−C1 169.9(3), N1−Os1−N3
151.4(3).
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3:H2O2 = 1:0.5. The possible involvement of intermediate I is
strongly supported by the fact that the treatment of 3 with 1
equiv of (NH4)2Ce

IV(NO3)6 (CAN) or 0.5 equiv of
(NH4)2(S2O8) gave UV−visible and ESI-MS spectra nearly
identical with those of 4 produced by the reaction with H2O2. In
these cases, one-electron oxidation of 3 gives an osmium(IV)
complex, from which deprotonation of the hydroxo ligand takes
place to give osmium(IV) oxo intermediate I; the pKa value of the
hydroxo ligand of the osmium(IV) complexes supported by
pyridine-based ligands was reported to be smaller than 0.29,30

From intermediate I, C−H bond activation occurs to yield 4 via a
radical-type mechanism (hydrogen-atom abstraction concom-
itant with Os−C bond formation, path A) or an ionic mechanism
(proton abstraction and carbanion rebound, path B). It has been
reported that C−H bond activation is facilitated by an agnostic
interaction in cobalt(III) complexes with a macrocyclic ligand.24

The relatively short distances between Os1 and the methyl
carbon atoms as 3.052(7) and 3.069(7) Å in 2 suggest that there
is such an agnostic interaction between the osmium center and
the methyl group to facilitate Os−C bond formation.31,32 Ligand
substitution of the OH group in 4 with the benzoate ion gave the
crystallographically characterized 5. It should be noted that the
presence of a metal center having both−CH2− and−OHgroups
as found in 4 has yet to be reported in other metal complexes
because the OH− ligand attached on a high-valent metal(IV)
center inserts into the MIV−C bond to yield a hydroxylated MII−
OCH2-type product.

1−7

In summary, the oxidation reactivity of osmium(III) hydroxo
complexes was examined to demonstrate that C−H bond
activation could proceed to form an organomatallic osmium(IV)
complex. An osmium(IV) oxo species may be an active species
for such a C−H bond activation reaction. The results may
provide new insights into the design of metal−oxo complexes for
selective oxidations involving C−H bond activation.
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